Internet Cookies

by Bob Swart

Gl and ISAPI server-side appli-

cations communicate using
HTTP, which is a stateless proto-
col. This means that in order to
save state information in our web
applications, we must do some-
thing special: yes, that’s where we
can use cookies. In fact, there are
three common ways to save state
information: fat URLs, hidden
fields and cookies.

Let’'s assume we have a CGlI
application or an ISAPI DLL called
WebServ, which starts by asking
our name and which needs to main-
tain the value of our name for the
remainder of the session. If no
name can be maintained, then
WebServ would need to ask for the
name every time a user
re-connects or even changes from
one HTML page to another. This is
one of the reasons for the need to
maintain state.

Fat URLs

A common way to retain state
information is by adding a variable
with a value to the URL itself. For
example, to maintain the fact that
my name is Bob, | could add a vari-
able Name with value Bob to the URL
as follows:

http://www.drbob42.com/cgi-bin/
WebServ.exe?Name=Bob

The above line contains the direct
call (ie the fat URL itself). We can
also embed the variable inside the
ACTION part of the HTML FORM tag, as
follows:

<FORM ACTION=
"http://www.drbob42.com/
cgi-bin/WebServ.exe?Name=Bob"
METHOD=POST>

Note that the general METHOD to
send FORM variables is still POST,
although the state (Name) variable
is passed using the GET protocol.
This means we’ll see the name and
its value appear on the URL: some-
thing that can be experienced with

some search engines on the web as
well. It also means that our
WebServ application must be able
to handle both GET and POST at the
same time (ie obtain the value of
Name using the GET protocol and
other input fields using the POST
protocol). Fortunately, Delphi
WebBroker components imple-
ment this using the QueryFields
(GET) and ContentFields (POST)
properties of the incoming
request.

Personally, | believe that any
information sent on the URL is
error-prone, so | generally try to
avoid it. However, using the POST
method to send regular form fields
and the GET method to send state
fields is actually a nice way to sepa-
rate the two kinds of fields; if your
web server application is able to
obtain them both, that is.

Hidden Fields

Using hidden fields is the second,
and in my book the most flexible,
way to maintain state information.
A bit like the fat URL inside the
ACTION part of the HTML form,
which is also invisible, we enter
hidden fields inside the CGI HTML
form. The syntax for a hidden field
is much like the syntax for aregular
input field:

<INPUT TYPE=HIDDEN
NAME="Name" VALUE="Bob">

This indicates that the hidden field
called Name has a value of Bob.
Hidden fields are invisible to the

end-user, but the names and
values are sent back to the web
server and application as soon as
the user hits the Submit button. All
the hidden fields and values are
passed using the ACTION method (ie
GET or PoST) of the entire CGI form,
so the web server application only
needs to perform the GET or POST
protocol to get all the fields
(hidden or otherwise).

Although hidden fields are quite
flexible, and invisible yet always
present when you need them,
there’s one thing that limits them:
persistence over multiple ses-
sions. Once you ‘wander away’
from the website and return later
(five minutes, an hour or a month),
you need to re-enter your name
again, because hidden fields are
only part of the content inside
your browser. They ‘live’ aslong as
you have the CGI HTML form
inside your browser window, and
no longer.

For multi-session persistence,
even years later, we need cookies!

Cookies

Cookies are sent by the server to
the browser. When using cookies,
the initiative is with the web
server, but the client has the abil-
ity to deny or disable a cookie.
Sometimes, servers even send
cookies when you don’t ask for
them, which can be a reason why
some people dislike cookies (like |
did for years, for example).

There comes a time, however,
when cookies are really useful, for
example when maintaining state
information beyond a single ses-
sion. In these cases, when informa-
tion must be retained for a period
of time, cookies are just about the
only possible solution.

O Listing 1: WebServ, set and get cookies.

program WebServ;
uses
DrBobCGI, SysUtils;
begin
writeln('content-type: text/html');

writeln('Set-Cookie: Name=Bob; path=/'); // non-persistent cookie

writeln;
writeln('<HTML>');
writeIn('<BODY>");
writeIn('<H1>Cookies</H1>');
writeln('<HR>');
writeln(CookieValue('"'));
writeln('</BODY>");
writeln('</HTML>");

end.

The Delphi Magazine

Issue 45

unit DrBobCGI;
interface

type
TRequestMethod = (Unknown,Get,Post);
var

RequestMethod: TRequestMethod = Unknown;

ContentlLength: Integer = 0;

function Value(const Field: ShortString): ShortString;
function CookieValue(const Field: ShortString):

ShortString;
implementation

uses
Windows, SysUtils;

function _Value(const Field: ShortString; const Data:
AnsiString; Sep: Char = '&'): ShortString;

var
i: Integer;
Str: String[3]1;
Ten: Byte absolute Result;
begin
len 0; { Result := "'}
i os('&'+Field+'=",Data);
0 then begin
i := Pos(Field+'=',Data);
if i > 1 then
iz:x=0
end els
Inc(i); { skip '&" }
if i > 0 then begin
Inc(i,Length(Field)+1);
while Datal[i] <> Sep do begin

Inol

i
if i

Inc(len);

if Datal[i]l = '%' then begin // special code
Str := '$00';
Str[2] := Datali+1];
Str[3] := Datali+2]1;
Inc(i,2);
Result[1en] := Chr(StrToInt(Str))

end else
Result[Ten] := Datalil;

Inc(i)

end
end
end {_Value};

const
Data: AnsiString = '';

function Value(const Field: ShortString): ShortString;

begin
Result := _Value(Field, Data)
end;

const
Cookie: AnsiString = '';

0 Listing 2: DrBobCGl (revised).

Set-Cookie

Assuming we use a regular 32-bit
version of Delphi (not the
WebBroker components, yet),
then we need to use a low-level
technique to set the value of a new
cookie. Fortunately, cookies are
set in the HTTP header that a CGlI
application (or ISAPIDLL) needs to
return. The syntax is as follows
(the uppercase fields are values
that can be specified by the user):

Set-Cookie: NAME=VALUE;
expires=DATE; path=PATH;
domain=DOMAIN_NAME; secure

Both the NAME and the VALUE can be
anything set by the user. So, we can
have Name=Bob Or Answer=42 or 1=2.
Note that the NAME=VALUE pair is the
only required attribute of a
Set-Cookie command.

The DATE in expires=DATE defines
the date after which the cookie is

10

begin
end;
var
P: PChar;
i: Integer;

initialization

end;
end;

Data := Str

end;

end;

gnd,

Inc(i);

end;
if i > 0 then

else
Data := '&';
finalization
Data := '';
Cookie := "'
end.

invalid (ie after which the cookie
will no longer be available). DATE
must be formatted as follows:

Day, DD-MMM-YYYY HH:MM:SS GMT
For example:
Mon, 01-Feb-1999 07:11:42 GMT

Note that GMT is the only legal
time zone, enforcing consistency
for international visitors and web
servers. This means that we may
need to convert our time to the
GMT timezone, and format the date
according to the above specifica-
tions, but that’s just about the big-
gest problem we’ll face when using
cookies.

The DOMAIN in domain=DOMAIN
specifies the internet domain name
of the host from which the current
URL is fetched. If the domain of the
URL is the same as the DOMAIN for a
specific cookie in the cookie-list
(on disk), then the PATH (in

The Delphi Magazine

Str: ShortString;

Inc(P, StrLen(P)+1)

Datal[i+1] := '&'

function CookieValue(const Field: ShortString): ShortString;
Result := _Value(Field, Cookie, ';'")

P := GetEnvironmentStrings;
while P~ <> #0 do begin
Str := StrPas(P);
if Pos('REQUEST_METHOD=',Str) > 0 then begin
Delete(Str,1,Pos('="',Str));
if Str = 'POST' then
RequestMethod
else if Str =
RequestMethod

:= Post
'GET' then
;= Get

if Pos('CONTENT_LENGTH=',Str) = 1 then begin
Delete(Str,1,Pos('=",Str));
ContentLength := StrToInt(Str)

if Pos('QUERY_STRING=',Str) > 0 then begin
Delete(Str,1,Pos('="',Str));
SetLength(Data,Length(Str)+1);

end;

if Pos('HTTP_COOKIE=',Str) > 0 then begin
Delete(Str,1,Pos('=",Str));
SetLength(Cookie,Length(Str)+1);
Cookie := Str

if RequestMethod = Post then begin
SetLength(Data,ContentLength+1);
for i:=1 to ContentlLength do read(Datalil);
Data[ContentLength+1] := '&"';

i=0;
while i < Length(Data) do begin
if Datal[i] = '+' then Datalil] := "' ';

path=PATH) of that cookie is
checked as well to see if the cookie
indeed should be sent along with
the URL fetched from the domain
and path as specified.

The default value of DOMAIN is the
host name of the server that gener-
ated the cookie, and the default
value of PATH is a single / character
(meaning everything matches). If
you leave both of them empty,
then a cookie set for any page in
your website will be valid (ie sent
along with) any other page of your
website as well. This may or may
not be what you intended, but at
least the optionis opentoyou. One
warning: the PATH is case-sensitive
(I guess the DOMAIN is as well), so be
sure to remember that a cookie
generated for HOME.HTM will not
be sent back to home.htm (if you
specified HOME.HTM as a specific
path, that is).

Finally, the secure attribute
specifies whether or not to use the
cookie using a secure channel (ie

Issue 45

using HTTPS, which is HTTP over
SSL). If secure is not specified, the
cookie is considered harmless, and
will be sent in the clear over unse-
cured channels.

Personally, when | use cookies, |
want them to be available for every
page of my website, so | usually
don’t bother with the DOMAIN or
PATH attributes, nor do | use the
secure attribute, which leaves the
NAME=VALUE = and expires=DATE
attributes only.

If you don’t specify a value for
expires=DATE, then the cookie will
be valid during the lifetime of the
session only (ie once you close
down the browser, the cookie is
gone). So, in order to get a persis-
tent cookie, you must set this
expires DATE toavalid future value.

HTTP_COOKIE
Now that we know how to set the
value and other attributes of a
cookie, it’s time to find out how to
get (or read) the values from the
cookies back from the cookie-file
on our user’s hard disk.
Fortunately, the hard work (get-
ting the cookies from the
cookie-file on disk) is done for us
by the web browser, which passes
the result in the header of the
resulting HTML document (again)
using the following syntax:

Cookie: NAME=VALUE; NAME=VALUE

In our specific case, we would get
Cookie: Name=Bob only, but all
matching cookie NAME=VALUES will
be sent along with the URL we
requested. Note that ‘matching’
here refers to matching DOMAIN and
PATH, and only for cookies that are
not expired yet.

Reading cookie values is nothing
more than parsing the single
Cookie: line and obtaining the
NAME=VALUE pairs, just like regular
CGI GET or POST variables. And, in
fact, we’ll see that we can use
existing code (the DrBobCGI unit)
that processes CGI GET and POST
variables, and extend it with
cookie support.

DrBobCGl

Now that we know how to set
cookies (using a Set-Cookie State-

14

ment) and get cookie values back
(the values assigned to the
HTTP_COOKIE environment string),
it’s time to pick up the old DrBobCGI
unit and enhance it with cookie
support.

Note that this new version of
DrBobCGI is also used for the CGI
protocol in my Under Construction
article from Issue 44 (April 1999)
about communication between
Delphi and Java applications.

Cookies And WebBroker

Using Delphi’s WebBroker technol-
ogy (included in the Client/Server
edition, or available to purchase as
an add-on), cookies can be set as
part of the Response, using the
SetCookieField method. Like CGI
values, a cookie is of the form
NAME=VALUE, SO we can put a
Name=Bob in there as follows:

var
Cookies: TStringlList;
begin
Cookies :=
TStringlList.Create;
Cookies.Add(‘Name=Bob’);
Response.SetCookieField(
Cookies,”’,’”,Now+1l,False);
Cookies.Free

Note thatwe’re usinga TStringlList
to set up a list of cookie values.
Each list of cookies can have a
Domain (second parameter) and
Path (third parameter) associated
with it, to indicate which URL the
cookie should be sent to. You can
leave these blank if you wish. The
fourth parameter specifies the
expiration date of the cookie,
which is set to the day Now+1 in my
example, so when the user comes
back tomorrow the cookie should
have expired. The final parameter
specifies if the cookie is used over
a secure connection.

Now, assuming the user accepts
the cookie, then having set the
cookie is still only half the work. In
afollow-up OnAction event we need
to read the value of the cookie, to
determine the value of Name. In this
case, cookies are part of the
Request class, just like the
ContentFields, and they can be
queried using the CookieFields
property.

The Delphi Magazine

begin
Name := StrTolnt(
Request.CookieFields.Values[
‘Name’1);

Other than that, cookies work just
like any CGI content field. Just
remember that while a content
field is part of your request (and is
always up-to-date), a cookie may
have been rejected, resulting in a
possible older value (which was
still on your disk).

Conclusions

So, we have looked at three ways of
saving state and seen how easy it is
to use one, cookies, in plain Delphi
or with WebBroker. All the code is
on this month’s disk.

Bob Swart (aka Dr.Bob, visit
www.drbob42.com) is a technical
consultant and webmaster using
Delphi, JBuilder and C++Builder
for Bolesian and freelance techni-
cal author.

Issue 45

	Fat URLs
	Hidden Fields
	Cookies
	Set-Cookie
	HTTP_COOKIE
	DrBobCGI
	Cookies And WebBroker
	Conclusions

